ON THE THEORY OF OPTIMUM AVERAGING
OF DYNAMIC SYSTEMS CONTROLS

(X TEORII OPTIMAL'NOGO OSREDNENIIA UPRAVLENII DINAMICHESKIKH SISTEM)

PMM Vol.30, N¢ 4, 1966, pp. 650-660

Iu.V.KOZHEVNIKOV
(Kazan')

(Received March 16, 1965)

The completeness of controlled systems optimization depends on the level of
the information available about their operation. Measurements and predic-
tions about the state of the system and the medium with which it interacts,
as well a8 the control signals, inevitably contain uncontrolled components
as, for example, random instrument errors, disturbances, etc. Thus, infor-
mation on the past, present, and future of systems can be complete only to
the extent that data about random events are complete. Hence, the optimiza-
tion of controlled systems 18 not in the final analysis reducible to the
optimum averaging of their controls in the sense that one must necessarily
be concerned with the appropriate formation of the average control signal
value, which must be the same for all states attainable by the system as
long as the latter do not exceed certain limits, e.g. the dead zones of the
measuring devices. The optimization criterion must provide for the attain-
ment of the extremum by one of the averaged system characteristics [1 and 7).

We should also bear in mind another aspect of the question, namely the fact
that certain systems are designed for use under various conditions and for
the fulfillment of different tasks while employing the same control algorithm.
Here we must naturally see to it that the control minimizes the average loss
engendered under the various conditions of system operation [3].

The problem of optimum averaging of controls has several different aspects.
Essentlally, it can be made to encompass the deterministic formulation of
the problem as one which corresponds to the minimum level of utilization of
information about the true conditions of process realization as represented .
solely in terms of the mathematical expectations of the determining functions
and parameters.

We shall develop the notion of optimum controls averaging as concelved in
[1 to 4] and suggest a general method of solving problems on the basis of
the principle of optimum controls averaging (Theorem 2) which we shall prove.
This opens the way for the formulation and solution of new practical prob-
lems.

Thus, in Section 4 we shall analygze the previously untreated problem of
optimizing programed control systems "as a whole", i.e. with the undisturbed
motion and the disturbed motion control law optimized in accordance with a
single criterion with allowance for their interrelationships.

The mechanical basis and one of the possible areas of application of the
theory to be developed are also characterized by the following stochastic
variant proposed in [ 5] wherein the object is to find the reactive accelera-
tion u = u(¢) of a polnt of variable mass moving in a forceless fileld with
a constant expenditure of energy and a minimum value of the functional
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4

Jo:\u‘-’(lt (0.1)
s
under the conditions that the position x;= x;(t) , velocity xp= x,(t), and
the point control objective are described by Equations

Ty = zy, ', = u, xy (8) == Zy4, x, () = Ty (0.2)
zy (1) = 2y, z3 (t) = 24y (0.3)

Here ty, t1, Zig» i (i = 1,2) are specified. In reallty x,, xp are usually
random functions of time, i, = X, (1), z,= X, (!), defined by equations which
replace system (0.2), (0.4)

X=X, Xy=u+ ul &+ & X, (t)) = 219+ Ly, Xy (to) = 230+ Lo

Here L,, L. are random perturbations in the parameters of the initial
state of the point; ul 1s the reactive acceleration produced by the correc-
tive arrangement in accordance with the realizations of L,, L, and intended
to compensate for the consequences of random perturbations in the parameters
of the point's initlal state; £,= £,(¢) 1s the error involved in the repro-
duction of the reactive acceleration., It is a random fupction of time which
can be represented in the form of a canonical expansion L6] with determined
coordinate functilons g,,(t) and random coefficlents P,,.

Since the control signals u and u' are formed 1lndependently of the
realizations of ¢&,(t), 1t follows that exact fulfillment of boundary condi-
tions of the form t0.32, 1.e. X (ty) =xu, Xa(t,) = x5 1s impossible.
Thus, from conditions (0.3) we must seek fulfillment of the relations

M (Xyy | Ly, Ly) = zyy, M (Xgy | Ly, Ly) = 29
or . .
M(Xy —ziy [Ly, L) =0 (i=1,2) (Xp= X;(t) (0.5)

Here M (Xj; — ziy|Ly, Ly) 1is the conditional mathematical expectation of
the random quantity Xx,,— x,,.

The control quality can be naturally evaluated by way of the functional
¢

T=m{Y e+ 8 - a ez af (0.6)
t,
Introducing the function JX,{(t¢) as determined from Equations
Xy=(u+ &)?+a @+ § X3 (tg) = 0 (0.7)
we obtaln
J= M (Xy) (X5 = X3 (4), o= const > 0) (0.8)

We now see that the example of [5] in the stochastlc variant which we
have been considering 1s reducible to the solution of the following specific
optimum problem: for system (0.%4), (0.7) we are to find control functions
u=u(), u =ul (¢ L, L), which minimize functional (0.8) with boundary
conditions (0.5). It is easy to see that this problem 1s a particular case
of the problem whose formulation and solution,is the subject of the present
paper.

1. Let there be a controlled system designed to realize the functionals
Ji=fi(Xya,d, T P,L)  (i=0,..., k) (1.1)
defined by the equations of motion
X =qi(t, X, 0,04, P, L), Xi(te) =4:(P, L), Xy=[Xu=X;(t)
(<t<hlh i=1,...,n) (1.2)

Here X = (X,,..., X.) 1s a continuous random vector~-function;
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T = (t, t,), v=la=(a;), u= ()] (=1,....,mj=1,....7)

vl =[a' = (aiz), ul = (ujt)} (i=1,....muj=1,...,7r0)
are the control parameters; @ = const , and u = u (t), ut = u' (¢, L),
a' = a' (L), T' = T' (L) are from the open kernel of the domaln U of
bounded plecewlse-continuous piecewlse-smooth functions with a finite number
of discontinuities; J,, @, ¥, J and their first and second derivatives
are continuous functions; P = (P,), I = (L,) are random parameters deter-
mined in the domains SQP and S)l , respectively, by the distributlon den-
sity f= f,(p/Ufi (), where 7,(p/t) 1s an arbitrary law of P distribu-
tion.

Let us emphasize the difference between the controls v and vﬂ T': the
former is formed independently of the realizations of P, L, defining the
program of motion and the nominal structural parameters of the system; the
second does not depend on P Dbut takes into account the realizations of L
and thereby possesses controlling propertiles.

As we see, functionals (1.1) are random quantities whose characteristics
are determined not only by the values of P and L , but also by the form
of the control 7, vﬂ T. The purpose of many controlled systems can be ex-
pressed in the form of Equations. '

M{fi(xh a, al’ Tzr P, L)} == 07 M{fj(xh a, al9 Tt, P» L)il] =O (1-3)

(=1, ..,k j=k+1,..., k)
and their quality evaluated by means of the functionals
J'= M [fo(Xy, a, &', T, P, L) |1] (1.4)
J =M (fo(Xy a, &, T, P, L)]] (15)

Here ¥ 1s the symbol for the mathematilical expectation; N(f,/i) is the

conditional mathematical expectation of the random quantity fi()fl, a, aﬂ
T, P, L)

If there exists a family of permissible controls of system (1.2) (1.e.
controls which satisfy (1.3)), then we can pose the problem of choosing that
control which minimizes functional {(1.5). This control can be called average-
optimum control, and the process leading to 1ts determination referred to as
the solution of the problem of optimum averaging of the control for system
{1.2).

2. The possibility of constructing a family of permissible controls and
the principle of optimum averaging of the control 7, vk ]" are established
by two theorems.

Theoren 2.1 . If v, vﬂ 7“. is a permissible control, then there
exists a family of permissible controls which includes v, vﬂ Tlg 1f the
ranks of the matrlces

Bu ... By xim Byl ... By}
A=l ooy Ab=l . ... (2.1)
Byy - Bi, wum Byt...B,}
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are equal to k and y = k— k , respectively.

Here
n
of, ( 0xX, 4 ox! . .
p- (3 S (2243 ]
ve=] v Y
B M[é ¥ (dX“Jri P >+ M ity o s =, )
i = _r _ — - i | (U= J= ,m
bowdl = 0X,, \ Oda; = aaYl da, dajJ
n
of,.. 90X -
1 . k v L.
WBE
oX,, i OHY 6H‘“’ 1
e Dt VS - Sz uj dt
lols=1 s 7 ls-———l 8
oxX Y (
vl aHV) (v) (v)
T = S; e dt 1211\ @i (¢, X, v, v, P, L)
fo =

In the above, Expressions A‘("), aayl/aot,-, Ba.,l/aaj are defined by Equa-
tions

Ai(v) —_—

oHW Y
23X A%()(t11)=6w ., v=1,...,n)

i 58, X, oa/ af, 98X,
EIM[(; X, ! 9, + 3z, da, )M=0 (2.3)

14 1
of; 90Xy, da, of, 98X df.
M |’ i T » - ) l ] ==

L&, 0xX, 3%‘ 6a + 90X, da, + da, L 0

b=
1

(i=k+1,.7..ko; J=4,...,% 8s=1,...,m)

Here 8;, 1s the Kronecker delta; Su,; (2), bu,jl (¢, L) are arbitrary
functions from 7 .,

Theorenmn 2.2 . If the conditions of Theorem 2.1 are fulfilled,
then there exists a vector function A = (A,,..., A,) and multipliers pg= 1,
Hy= conat , py=p,(Z) (¢t =m1,..., k; J=k+1,..., k) relative to which
the optimum control g, vl, T’, which maximizes (minimizes) functional (1.5)
has the followlng properties:

a) It minimizes (maximizes) the function M° [H (¢, X, v, ¢, P,
L, A)] of the variable u for any of the ¢ realized;

b) It minimizes (maximizes) the functions
MIH (¢, X, v, V', P, L, A) il]
of the variable u' for any f, /i<t <<¥, and L — Q3
¢) It satisfies the relations
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1t l

i af : o o of é aH

M i E i
[Z Pi‘EZ'T“"ST?Tdt]_O’MH. ”‘al “S aa:‘”)ll}”o
=0 ? ot =0 % CE (2.4)

(it v )]0 w[(Fmemmi)|i] -0

H=Mp1+...4+ An®p =1 ....ms=1,..., m)

Here M°{H} denotes that part of the integral which determines N(¥) ,
where ¢ satisfies the inequality to(l) <<t <C#;(l); the random conti-
nuous vector-function A = (A;,..., Ay} 18 determined by Equations

Ko

. oH % |
A= —gx- A;<t1‘)=Au=-—]_§0w--;ffl— (=1...m (25

3, Let us cite the schemes which can be used to prove Theorems 2,1 and
2,2. Let gy, pt, 7! be the permissible control of system (1.2) to (1.5). We
shall now consider the control

(v, o*, Ty =[u* =u(t)+ 6u(t), a*=a-+08s, uw'=ul(e, L)+ 8ul(s, L)
a* =dl (L) +8al (L), TV =T"(L)+8TH(LY
from U . Here u= [, ut=1[d; (¢, )] (i=1,..,rnj=1, .., r) for any
fixed L are considered supplemented in their definition beyond the limits

of the segments [, ;] with preservation o,; the continuity and continuous
differentiablility at the points ¢ = #,, ¢t = #}; du;, dul; are of the form

x KoK
Suj =3 a;bujy (1), Suf= 3 af(L)suz! (¢, L)
i=1 =]

everywhere except an arbitrarily small segment [t’, ¢”], t*- t’= 7T 20,
where :

buj=wj—uj, Suf = —ut buj(), G“ﬁ: (t. L)
o=[w;(t)], o'=I[w(, L)), 8a'(L), 8T (L)
are arbitrary functions of the corresponding arguments, and u, @, u', m‘, are
considered continuous on the interval (¢’, t”) ;
6“; 6ala éle T8 = {8, . o a, b ol = (allr L | u;&.—k)
are arbitrary vectors.
Substituting o*, »/* T!* 1n (1.2) we f£ind the trajectory r*= (r*,,...
wees X, *), where X,* are known functions of the arguments
" IES (Y‘l) = ((1{, al‘h bah éail’ 6‘1‘!' T)'
The control »*, »*, T'® can be considered permissible by definition if vy,
satisfy Equatlons
MIfi(Xe*, a%, o, T, P L)) =0  (i=1,...k) ey 3:1)
1+ . (Xy* =X*(4'"))
Mfi(X1*, a*, a" , T, P, L)1 =0 (i=k-+1,..., k) (3.2)

Equations (3.1) and (3.2) have the solution y = O , since v, v, T! 1s
a permissible control. By virtue of the agreed assumptions about the pro-
perties of the functlons fi, @i, ¥i, 1, uf(*, the rules of supplementary defi-
nition of u,u! beyond the 1imits of the ségments [#,, ¢!)) and by the isolation
of the interval (¢’, ¢’} , their left sides are cohtinuous and continuously
differentiable with respect to vy, . Hence, the theorem on the existence
of the implielt functions of Equa.%ion {3.2) can be used to determipe the
continuous and continuocusly differentiable functions q!j (=1, .., of the
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varlables uj, Oaj, (\alj, tSi’j, 1, /., provided the rank of the matrix

At —[M( s (zﬂ =1
o= Py - (G i=1,...,9)

In precisely the same way system (3.1), where alj (j=1,...,y) are deflned
by Equations (3.2), determines the implicit functions «,, 6@, 1f the rank

of the matrix
i—=1,...,k
(]':1,. R 4

\S:i,...,m ,

1s y = ko= k .

. . .a/_ .. }
‘4‘: 1 . 1

ol ol
is x .

Writing out the expressions for the elements of the matrices Al*, A*, we
see the valildity of tne identitles A* = A, A!* = 4!, where A and 4l are
defined by relations (2.1) to (2.3). :Thus, there exist vy, not simultaneously
equal to zero which satisfy Equations (3.15 and (3.2) provided the ranks of
the matrices 4 and A! are % and y ., respectively. But in this case
there exists a permissible control (v*, »!* T!*) 2t (» !, 7!), which contains
v, o', T' for y = 0 . Theorem 2.1 has been proved.

Let us suppose now that », »', 7! is a permissible control which satisfles
the conditilons of Theorem 2.1 and maximizes functional (1.5). There then
exlsts a family of permlssible controls in which

AT, = M {f;(Xs*, a*, o, TV P, L)— f;(Xa, a, o, T}, P, L)} = (3.3)

x m 1 my
=2 Biti+ 2 By b0+ Bif + X Biff - Bivte
i=1 =1 =0 =
(i=0,...,k)
n Kok
of, , 0X, a
Bijj=M [ ; ( E Lo Z‘J
v=1 vi J =1
n ko—k
. X - 98X, da )} .
B, xﬂ.:M[ ' _l_(_“+ Z __"11 aY)_l_ 6}1]
) 0X,, da; o da, da; da;
n Ko—k
af, ,ox 80X, dal a1,

Bija: M{[ ——r (_vl + 2 vi Y ) + i ]Gajl } (3.4)
v=1 9X,, aail y=1 aaYl 6a]-l dajt

rooof, ex, TFoax, oa) af
Bijt_—‘M’{[ _0X_1__< 2D >+ ——i,]a‘jl}

v=1 v\ o =1 9o, 0t; ot;

n ko—k

1

Bi:M[ af{ ( 6Xv1 n 2 6Xv1 6aY )]
v=1 Xy d v=1 aavl o
AJy=AJ 0, AJ;=0 (i=A1,..,k)

Here ¢ 1is a quantity of higher than the first order of smallness; the
coefflcients of aj, Gai,'aai’, Gzil, ¢ are computed for y = O . The functions
4! of the variables a;, da;; 84!, 81}, x are determined by Equations (3.2),
so'that the partial derivatives :

14 l U l I 1
aa., da., _ da., da, da, da,

da; da; ~  9ba; ° ot;t = odt;t dt

9X,, da, )]
aayl aaj

r
-

satisfy Equations
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(3.5)
: . Ko—k
M{[i 3, ( Xy 3 ax,, o m z}:o (i:k~§—1,. : ,,kﬁ)
S X\ T A Tt Ty F=1y %
n Eo—k H i
M{[Z a]‘i ( 6le n E ale 6uy ) + afi iHll =0 (z =k4-1,..., ko)
vl aX\ol aa.’i ‘Y=i ale aa]’ aaj J I=1,...,m
n - Ko—k 1 .
p {[2 fj'f1 ( 3le + 02 6X91 89@ ) + afi ]] l} =0 (i: k4-1,..., kQ)
R Rt O e L LT dajl i=1,...,m
2oap cex,, O oex, da! af kAt k
M {[2 i ( vl + Z vl Y ) + i ]ll} ___,____0 (L': "["‘ 3o v 0y o)
- a vl at,l Y=l‘ 6chl 6t}l atJl IZO, 1
n ko—k
af. ;8X . 84X, dal
M‘{[ %(_@,ﬁ+ > __.1:_4)} z}.—:o (G=k-1,. .. k)
v=1 vl T v=1 a(t,r a1
It 18 evident that the following relations are valld:
X, _M"«l SHW ox,, " og®
mm 52 aus &usjdt, aaj zs adj dt
toi $=1 t°i
t To v t‘f 0)
ax,, aHM . 9X AH™ g 26
= ——~ Sujldt = \——dt .
da;’ S pugl Ottt da;l S da] (3.6)
tal s=1 tql
90X, Iy oyl 0y ISy pigr
W:[H(V)‘_H(V)]t, {ty <V < HY), i = ("> 1, 4" <)
84Xy —=— HO| _aX_l_ =H™M] |
Here ! b’ on h
n n
H =3 AMg, (t, X, v, 9", P, L), HO* =3 AV, X, 0, ¢, 0, ¢, P, L)
i=1 i=1
v)
Ay O e aH' , A =5, (i, v="1,..,n) 3.1
1 oX, § v

Taking account of (3.3), we obtain the required condition for the maximum

of functional (1.5),

&= 2 2 wBya; +2 2 #:B; 18, +2 Z wBt -+

j=1 t=<0
+§_“ Z #:By; +2 B <0 (3.8)
=11=0
Here o= 1, Mys.«vs Mgy are constant nonrandom Lagrange multipllers.

Since the condition of Theorem 2.1 as regards the rank of the matrix 4 1s
assumed to be fulfilled, the multipliers p,,..., 4, can be chosen on the

hand side of (3.8} vanish. The remaining term in (3

basis of the condition whereby # coefficlents of uéj 4a, in the right-
13 independent and

arbitrary. Hence, taking account of the 1nequality T20, we have instead
of {3.8) that .k

! 1By =0, 2 1By, =0, 2 bByi=0, 3 <o B9

i=0 =0 =0 i=0
(i=1,..,%+m s=01, v=1,...,my)
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Let us multiply each equation in (3.5) with the subseript 1
(t =k + 1:-~~: ko)

indefinite Lagrange multiplier u, (L)

by some
s find the mathema-

tical expectation of the results of multiplication, and sum them over {

for a fixed in each group of equations. Adding the resulti expressions
which are equal to zero to the left-hand sides of relations (3.9}, we find
that
ks n —k n Ik 1
of X 6fi 40X, du
M[ZEW i u+222m v *]:o
1 X
=0 v=1 aXV ce y=1 v=11i=0 " aaY 60‘3
7=1,... )
Kok ke 1 ko
48X, ., da 3f
\41 vl Y -
=0 v=1 y=1 v=1 {==0 Y Fm=)
(f - 1v' > 0y )
ko—k N Kn ko
afi 80X, oat of.
55w+ 3 3 3 ke Y w0
[ i=0v=1 y=1 v=1i=0 aavz anI =0 daj
(i=1,. .mo) (3.10)
ko 7 Ko—k 7 ko 1 Ko .
) af 80X, da af
M3 ot e T3 S gl S 5
[ ' 1
i=0 v—1 "1 6! y=1 v=1 {=0 3&1, Bt; i=0 6&].
(71=0,1)
ko—k n ke 1
af 84X, da
M[ZZ“* v1+222 By % vi y]<0
i=0v=1 aX o v=1 v=1 §=0 90Xy oo Lo

The condition of Theorem 2.1 as re%ams the rank of the matrix ~

fulfilled, so that the quantities u,
from Equations

39X,

is

(¢t =% +1,..., % ) can be found

i 1|=0 t=1,. .., kog—k) (3.11)
[(ZZ"H"»X )| ‘
§=0 vl Y
We set
ks Py n
DM =—Ay, D AVA =AM (1 i=1...n)
1=0 vi v=]
Then, taking account of (3.7}, we have
n n
v oH Iy
2 A“H()zz A =H, Af -*:---_—-—--max.l , Am)=A,= Z By —e 8X
v=1 i=1 i=0
(i, v=1,...,n)

Relations {3.10) and (3.11) can now be written as

0, .
M[SE} ‘g;f—su,jd!}zﬂ, M[(SZ aaz:{ }M,—_e
t,8 8=1 to o=1 (3.12)
G=1,...,% i=1,. ,ko--}:)
ko
Al 3 e o)
i==0 P
(3.13)

{{2 M oat ‘

i=0

t oH
— S-—l- dt
a(lj
tot

}ﬁajl} =0 (j=1,..., mg)
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[ke af lxl
i > 3H
M[Z Mg — S-—(;;;—_—fdt]:(} (=1, ..,m (3.14)
—o i o ]
n
M° [H*—H],. >0, H* =3 A@(t, X, 0, a, 0, !, P, L) (3.15)
i=1

Inequality (3.15) follows from the last relation of system {3.10). 1In
fact, the triple sum in square brackets in this relation 1s equal to zero
by virtue of ?3.11), while the remaining terms vanish for all t , where
iy > v, 4}l < ¢, since here 90X, /07=0 {see (3.5)).

It 1s clear that relations (3.13) can be written as

ks
§ (3 “‘*a‘z—?*“ H’%‘H‘] 18! yar =0
1

i=0
ko
.SlM[(EO ""%“H':,z) |{[rwent ma=o

i

k.
afs oH 4
S M{(Z Mg, T~ S W@*}}l} fz(l)éaf(i)diﬁﬂ (J=1,....7)
j= 7 H 3
4 tg
Hence, taking account of the arbitrariness of the functions 88" (1), 88t (1),
bajl(l), we obtain

N - S 2y Y[i]=o
M[(éoM‘EF+H§*o‘>!I}‘O’ M[<§api375_ f"’)H“ (3.16)

H
L P
i ,
M[( W7 — -"—'-'_dt)ll]=0 (F=1,...,my)
g:]o ‘aajl ”aa,.‘
0

Relations (3.14) and (3.163 coincide with conditions (c) of Theorem 2.2.
The validity of conditions {a) and (b) of this theorem follows from inequal-
ity (3.15). In fact, since w and ! are independent, we find from (3.15)

that L L
M H@¢ X, 0,0, u,a,P, L, A)—H{t, X,u,0,u, ¢, P, LA, 20 (3.17)
MO[H( X, u, a0 d, P, L, A)~H(t, X, u,a,u, d, P L AL>0 (318

(3.17) implies condition (a) of Theorem 2.2 directly.
Let us suppose there is a situation contrary to that stipulated in condi-
tion (b) of Theorem 2.2, i.e. that there 18 a point (L, t) = (t’, t’) where
M{H{ X, u,a 6, ¢ P, LA—H(E X, u au,d, P, L A . <0 (319)

Then, by virtue of the continuity of # with respect to w! and the
plecewise continuity of ! (¢, L), 1t 1s possible to find a segment [4%*, £%*]
which includes the point L = £/, where the inequality sign in (3.19) remains
unchanged., The function w! can be chosen in such a way that it differs from
ul only on the segment [2%, t**] |

Hence we have
M H* — H}, = 5 M{H{ X, u, 0,6 d, P, 1L Ay—
l#

—H(t, X, u, a6, d', P, L A) Ly f, (D) dl <0

-

~
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which contradicts, condition (3.18). It remains for us to accept the validity
of condition (b) of Theorem 2.2 and thereby the.validity of all the state-
ments comprising the theorem. In conclusion we note that Equations (3.12)
are satisfiled identically by virtue of condition (a) of Theorem 2.2.

4, In addition to solving several new problems in statistical dynamics,
the above results also make it possible to formulate a new procedure for
synthesizing program control systems which, in contrast to the existing tech-
niques, enables to solve a problem "as a whole" when the programed motion
and the transient process control law are optimized from general methodolo-
glcal standpoint with allowance for theilr interrelationships with respect
to a single criterion. The scope of the present paper requires that we
explain only its pasic features as 1llustrated by the following highly spe-~
cific example.

Let there be a controlled objéct
X' = aX + BW, X (&) = X,, X(@)=0C, <<ty (4.1)

Here 12, ¢,, to, t, are known numbers; B, X, are specified continuous
random quantities with the mathematical expectations my, mx,; ¥ 1s the con-
trol signal.

We know that 1f the control objective 1s achieved under the programed
conditions, the W can be represented in the form W = u - uﬂ where u=ul(t)
1s the constantly reallzed programed part of ¥ , and [l — ulu, Xg ...) is
the control signal whose purpose is to compensate random disturbances, which
in our case happen to be the deviations JBY=p —m,, Xo°= XYo— myo. The
trajectory of the object xr 1is here subdivided into the programed component
X, and the disturbed component X,= ¥ — X, , which are given by Equations

Xy =aX;+ mp y, X, (to) = mxn, X () = M(Xpy) =G (4.2)
X, = aX,+ Bul + B,  Xj(t) = X  Xa(t) = M (Xy[by z) =0 (43)

Existing methods of synthesizing u,ul are characterlzed by the choilce
of programed notion independently of the disturbed motion. This opens the
way for inadmissible solutions. For example, let a control process be opti-
mized with respect to the energy expenditure described by the functionals

l] tl
Jo=2go S uldt, Ji=g S u'? dt, g=const>0 (i=o,1)
to to
in the programed and disturbed motions, respectively. Independent minimiza-
tion of these functions generally does not maximize the total energy expen-
diture, since, as is evident from (4.3), the characteristics of disturbed

motion depend on the programed motion. It is more expedient, therefore, to
optimize u,ul by minimizing a functional of the form

1 t
J=Ml:go S uwtdt + g S u’%u] (4.4)
to A
or by some other criterion which affords a notion of the overall energy loss.
We shall show that the optimization of u,uf'relative to criteria of the

form (4.4) can be attained by the methods of the theory we are developing.
We introduce the function X,(t) defined by Equations

Xy = go* + st Xy (to) =0 (4.5)
Then instead of (4.4) we can write
J= M (Xg) (4.6)

Now the problem of synthesizing control of object (4.1) reduces to the
solution of the following optimum problem: for system (4.2), (4.3), (4.5)
we are to find the control u(f), u'(t, Xz ...), which minimizes functional
(4.6). It 1s clear that this problem is of the form considered in Section
1, where
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ne 3 k=1, ke=2 Lo (Lp=(8, X tf=1, #=¢
¢y = aXy + mu, @y = aXy Bl = Bu, @y = go* + gl

fo= Xu, h=Xn— I == Xy
It can be solved by applylng the conditions of Theorem 2.2, whereby we

have H = Ay (aX; + mpu) + A, (aX, -+ Bul + B%u) + A, (go® + g’
2
A= — % = —aA,, Ap{ty) = — i_zo B ;;i == — 1 == const
My =— 2 o, Az(tl):'-é}lﬂi'z—uz(l} Xo)
00X, = iale P
Ar=—3H _,, Aa(tx)x—-é}t-—a—f—i—x_pgz———i
0X; = t0Xg

MimpAy + B°A; + 2g,Aqu] = 0,  BA, + 2gAul = 0

Hence we obtain

M (mpA; - BoAy) ity - M {Bog,) £
= 2o = e 7 efl( 1) (4.7
BA B
e Sd o 3 Y 7))
W= %6 4 (4.8)

Substituting Expressions (4.7) and (4.8) in the right~hand side of (4.3),
integrating, and satisfying the boundary condition Xy, = O , we find that

1— 2 ) Bomyuy, 1 BOM (Bouy) |, B
0,6 (ts~1a) b1 2 V‘“} — 4.9
X0 T 4a [ go + g 1 0 4.9
From thls we have
__ golDo — gimp Dy
M (B%z) = Ry (4.10)
where =
4agi® Gt poxo Bo:
Bo:—imem Y ( 72 ) . Dle(fﬁ_)

Integration of Equation (4.2) with allowance for Expressions (4.7) and
(¥.8) and subsequent satisfaction of the boundary condition X, = (;, makes
it possible to write the following expression for the multipller u, @

_g0+ ngI [ 4a (Cl—mxoea (tt-tn)) Do :l
T my (1 — €% 1) " g0+ g1D1

411y

Computing u,, M(B"u,% from Formulas (4.10) and (%.11) and substituting
the results into Formula (4.7) we find the optimum program of motion wu(t).
The optimum control law .ul= u (t, Xg, .. .) of the disturbed motion X, can
be found from (4.9) with allowance for (4.8) upon replacement of Yi= Y&, t,
in (4.9) by the instantaneous values of x,, t 1in the form

S U [ 4aXy et G-D  BO(myp, + M (Bop,))
PRI R EM (B } (4.12)

In conclusion we note that the principle of average optimality impliles
the conditions of determined systems optimization as the 1limiting cases when
the domains of realizatilon of the random parameters are contracted to points.
lémgngithese implications 1s the maximum principle as formulated by L.S.Pon-
riagin. :
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